Digital Prototyping Drives Auto Makers to Build Faster and More Efficiently

For decades, vehicle manufacturers have used prototypes as a way to test and refine new models before putting them into full scale production. However, those test cars are an expensive part of the development process, with each taking as much as $1 million to create. Advances in digital simulation have motivated many manufacturers to take a closer look at a faster and less expensive way to evaluate new models.

Jaguar Land Rover recently began mass production of the Jaguar XE, which was designed and developed without using any prototypes during aerodynamic testing—the first mainstream model to do so. The company wants to eliminate all physical prototypes from the process by 2020. Greater processing power has allowed more widespread use of computer-aided engineering in vehicle manufacturing, as computer simulations have increasingly replaced the physical testing process that is typically expensive, time consuming, and often inaccurate.

Annually, car manufacturers spend about $10 billion on prototype construction. According to Exa, the software company that worked with Jeep Land Rover on the XE, General Motors constructed 170 prototypes during testing for its latest version of the Chevrolet Malibu. Manufacturers could reduce the amount spent on prototype testing by a third with the use of simulation technology. In addition to seeing the three-dimensional renderings of an initial design, engineers can take the vehicle around a virtual test track and place it in other situations such as a parking lot. Approximately 80 percent of problems found during physical testing can be eliminated through simulation.

Car makers are under pressure to reduce cost in the manufacturing process as well as meet demands for reduced emissions, and to add innovative connected technologies, as well as autonomous driving features. Another advantage of digital prototyping is that the technology is expected to bring down the car industry’s snail-pace development process, that can take as long as four years, and keep up with rapid prototyping by new rivals such as Google, Tesla, and Apple.

Not all vehicle manufacturers will immediately turn to virtual prototyping, as the technique is expected to meet resistance from engineers. Many purists feel that one cannot properly judge a vehicle’s performance until it can be physically seen. German manufacturer Daimler continues to pour huge amounts of money into wind tunnel testing its cars. Some automotive designers, such as Chrysler LLC,  are combining simulation technologies with clay models to satisfy the need to see a prototype in its physical form before committing to the design. Manufacturers must also prove that they have crash-tested at least 10 cars to satisfy safety requirements.

The new digital design trend seems to be inevitable. As the technology advances, more manufacturers will be willing to entrust their designs to the computer. In the future, designers may be able to view holograms of new car models, and test drivers may be driving new cars on purely virtual tracks before the dimensions are uploaded to automated manufacturing facilities. With the reduction in cost, automotive designers will have a bigger budget to spend on innovative technologies such as vehicle to vehicle communications, and the shorter development time means we may see these futuristic vehicles move from the drafting table to the road a lot faster.

Share This