Prosthetic Limb Restores Amputees’ Sense of Touch
Nov13

Prosthetic Limb Restores Amputees’ Sense of Touch

Thanks to ongoing neurological research at the Revolutionizing Prosthetics department at DARPA (Defense Advanced Research Projects Agency), we are seeing incredible breakthroughs in the advancement of prosthetic limbs. The latest development enables amputees to not only control their robotic limbs with their minds, but to feel with them, too. Limbs Need to Communicate Prosthetic limbs have two jobs: to transmit information from a person’s brain to an object (e.g., “Grab the object from the table”), and to transmit information from an object to a person’s brain (e.g., “You now have the object in your hand”). Justin Sanchez, program manager at DARPA, says “Without feedback from signals traveling back to the brain, it can be difficult to achieve the level of control needed to perform precise movements.” Anatomy of DARPA’s New Robotic Limb Scientists have long been able to create limbs that can be controlled by a person’s brain; communicating data back up to the brain has been a bit more difficult. To enable both lanes of communication, Sanchez and his team placed electrodes on various parts of one patient’s brain; specifically, the parts responsible for recognizing sensations like pressure and for controlling body movement. They then connected those electrodes to the patient’s mechanical hand. The hand DARPA used, developed by the Applied Physics Laboratory (APL) at Johns Hopkins University, included state-of-the-art technology that sent electronic signals to the brain when the person touched an object with his prosthetic hand. As part of their study, the research team blindfolded the patient and touched individual fingers on his hand at random; the patient was able to identify which finger they were touching nearly 100% of the time. When researchers touched two fingers at once, he laughed and asked if they were playing a trick on him. At that point, it became clear how well the hand was actually working. Room for Growth: The Future of Prosthetic Technology DARPA’s technology, which essentially builds a network between a person’s brain, their prosthetic limb, and an object, opens up a number of doors for the future. DARPA is presently working on the paper that will document the details of their findings; after peer review and publication, other researches will be able to use it to modify the direction of their own studies. While the DARPA hand is a huge leap in upper-limb prosthetics, there still is room for improvement. Its movement is still more robotic and jumpy; there’s a lot of work to do before we can say we’ve truly recreated the versatility and maneuverability of the human hand. Some have asked about the possibility of adding temperature sensors and focused, nerve-to-nerve sensitivity. Aesthetics...

Read More
3D Printed Hands Become an Affordable Solution for Amputees
Sep23

3D Printed Hands Become an Affordable Solution for Amputees

  In many fantasy and sci-fi narratives, there’s a point where reality is pushed aside and a fantastical future is introduced. Often, this turn happens when the only way to solve the problem at hand is to utilize some amazing, futuristic technology. The 3D printing of medical device prototypes is, in a lot of ways, similar—when we encounter a problem, we can now think up and print out a solution. The only difference between our Star Trek-y fantasies and the 3D printing of medical devices is, of course, that 3D printing solutions are are a reality. Affordable 3D-Printed Hands for Amputees Using computer graphics of existing hands, Open Bionics hopes to make affordable, 3D-printed hands available for purchase in the next decade or so. The company’s ambition comes in part from their comprehensive understanding of how brain signals activate body parts. By utilizing specific materials in their printing, the company is able to create customizable, 3D-printed hands. The hands are completely functional. Similar to regular body parts, robotic hands are controlled via electrodes connecting them to a person’s brain. When we reach out to, say, pick up a cup, our brains automatically send electrical signals that tell our wrists to rotate, our fingers to splay open, and our hands to wrap around the cup. Robotic technology can now artificially recreate that bridge. As reported by The Mary Sue, it is now even possible to connect the electrodes in robotic arms to allow their users to actually feel what they’re touching. There are nearly 2 million people in the United States living and adapting to life as amputees. Open Bionics is determined to improve their quality of life by streamlining the bionic 3D-hand-printing process to be effective, precise, and economically viable. 3D Printing for Everyone In the early stages of 3D printing, a printed body part could cost someone hundreds of thousands of dollars. As 3D prototype printing is integrated with a wider range of materials (like advanced polymers and living tissue), it will be more plausible to mass-produce 3D-printed hands of all sizes, shapes, and designs. A new printed hand could someday be as affordable as a pair of designer shoes. Overcoming the Socio-Tech Gap Obviously, 3D printing has our attention. However, it is still a relatively new endeavor, and the majority of the public doesn’t know too much about it. We also recognize the trust gap, too—even though the technology is surely improving, a lot of us have a hard time believing 3D printing is as capable as it promises to be. Open Bionics believes that they’ll be able to create these fully functional 3D-printed hands in about...

Read More
3D Printer to Construct Steel Foot Bridge in Amsterdam
Jul22

3D Printer to Construct Steel Foot Bridge in Amsterdam

MX3D, a Dutch research and development organization, is working in partnership with several companies including Autodesk, and Lenovo, to make their ambitious 3D printing project a reality. The combined talents of these firms will attempt to construct a pedestrian bridge across a canal in Amsterdam using 3D printing technology. The engineers at MX3D have worked to create robotic printers that will be capable of executing the job autonomously. The robotic printers’ six-axis arms have welders on each tip that will essentially “draw” the steel structure from each side of the canal. 3D robotic printers use various types of metals, such as aluminum, bronze, copper, or steel for construction. The printers create the structures in the air without the need of traditional support structures, such as scaffolding because the builds are sequential and can be constructed in any direction. The MX3D printing technology will differ from current 3D printing technologies in the sense that it prints “outside the box.” Currently, 3D printed objects are limited by the size of the printing space. Large objects are printed piece by piece and assembled later. By utilizing this new six-axis robotic approach, neither design nor function will be hampered or confined to a square box. The robotic application will take 3D printing to a whole new level of design, and the potential for the MX3D application is limitless as it enables 3D printers to produce practical, life-size constructs. Engineers expect that construction will begin by 2017. There were a some growing pains during the developmental stage of the printers. MX3D engineers have dealt with the printers generating “worm-like” globs, welding machine explosions, clogged nozzles, and the robot got disoriented. Multiple testing sessions finally produced an operational robotic printer that was able to create the structures. The bridge structure is designed by Autodesk project engineers and will employ a proprietary software program. It will synchronize with the technical development of the bridge, giving due consideration to the bridge’s location. The completed bridge will be 24 feet in length, made of a steel composite created at the University of Delft, and will have a superior tensile strength. It will also be functional and is expected to handle normal foot traffic. MX3D envisions a time in the not too distant future when advances in future technology will foster the development of robotic concrete printers too, in the hopes that the 3D printing of significant structures such as buildings will be possible....

Read More
3D-Printed Electronics Are the Future
Jul09

3D-Printed Electronics Are the Future

Imagine printing a solar cell in a matter of minutes. Some business owners may think it sounds like something out of a science fiction story, but 3D printing is developing with ever-expanding capabilities including the possibility for 3D-printed electronics. The technology isn’t perfect yet, but researchers are hard at work developing ways for printers to create nanotech components from synthetics. These so-called organic electronics rely on highly conductive materials that break the production mold. A team of researchers at Lawrence Berkeley National Laboratory in California and Technische Universität München (TUM) in Munich have been working to identify and improve upon the electrical properties of synthetic films. The TUM team recently reported that razor-thin polymer electrodes can be created on 3D printers using enhanced synthetic films. Researchers in California can be thanked for these enhanced films. The team at Lawrence Berkeley used X-ray radiation to alter the molecular structure of freshly printed synthetic layers and worked in conjunction with the TUM researchers to determine how different post-printing processes affected the films. The international team plans to publish their results in Advanced Materials, an industry trade journal. These new printing technologies are exciting, but more research is on the horizon. Making organic electronics is incredibly complex. The process will need to be closely observed and understood so that custom applications are possible in the future. Researchers are also working to perfect techniques to create the various layers in electronic components using only one process. This will increase convenience for manufacturers and will allow the large-scale use of 3D printing to create designer electronics. There’s a great deal at stake here for businesses. Projected future markets for these technologies include solar cells, RFID tags, touch screens, glowing films and flexible displays. With future projects in development, such as wallpaper made of OLEDs, it is not surprising that organic electronics are expected to make a big impact on the consumer market thanks to this incredible range of applications. Of course, the ability to print designer electronics on a 3D printer also significantly increases prototyping and bespoke design capabilities for small businesses. Instead of blowing their research and development budgets on electronics manufacturing, businesses will be able to print components in house for immediate testing. It may seem a distant dream now, but the enthusiasm of researchers in California and Munich indicates that printed electronics are closer than many might...

Read More
Lily Robotics: The Camera Grows Up
May28

Lily Robotics: The Camera Grows Up

The selfie generation has found its mascot in a remote-controlled flying camera named Lily. Developed by Lily Robotics, Inc. with Henry Bradlow at the helm as Chief Technology Officer, Lily is a robotic camera capable of flying, following the subjects as they move, and documenting the action in stills or video format. How Lily Works Lily is a camera developed in the realm of the GoPro, but with a key difference—Lily is a completely hands-free operation. The user carries a pocket sized tracking device. Lily can maintain a distance as close as five feet or as far as 100 feet and retain the capability to track movement, take stills, or record video. Onboard features include an enhanced camera with image stabilization to aid in tracking users, ensuring appropriate focus and framing. The device is ready for action right out of the box. It does not require special procedures to set up or a bulky controller. Throw it up and let it go, and Lily will fly and stabilize itself in mid-air where it hangs awaiting further instruction. If the user is off and moving, Lily will also be flying and recording. Tech Specs The camera has similar capabilities to the GoPro Hero 3. It is capable of shooting high definition video at 1090p for up to 120 frames. A special onboard feature can even trigger slow-mo as the action intensifies, capturing the excitement in thrilling detail. For still photos, the camera is capable of shooting 12-megapixel images with a 360-degree panoramic view. The data can be streamed directly to your mobile device across a variety of platforms for real-time review, guaranteeing certainty that the perfect shot has been achieved. Lily weighs just 2.8 pounds and can travel as fast as 25 miles per hour.  With a maximum range of 100 feet from the user, a sleek waterproof casing, and battery life estimated at 20 minutes of use for every charge cycle, Lily is the perfect companion for any outdoor adventure. The body of this robotic camera is made of black polycarbonate with some elements rendered in brushed aluminum, keeping it lightweight for easy portability. The Prospects for Robotic Cameras In our image-focused society the camera will never go out of style, but technology will change the ways that these devices are implemented. Bradlow, the CTO of Lily, expects that the next version of Lily will account for these changing demographics. This robotic drone camera may become smaller, handier, and more feature-packed in the next versions. The Lily is currently available for preorder at a discounted price, inviting adventurous users to be among the first to experience this advancement in...

Read More
Quoc Le and His Quest for the Ultimate AI
Apr06

Quoc Le and His Quest for the Ultimate AI

Machines are very good at a great many things. Indeed, computers are better with numbers than human beings could ever hope to be. They can process and store vast quantities of data, but they can only use it to complete operations for which they’ve been programmed to perform. They can’t actually learn from the information they’re given. Quoc Le aims to change that. Machines don’t interpret the world in the same ways that we do. Their input consists entirely of numbers, and they simply aren’t capable of the sort of abstract thought that our brains use to learn about the world. We can take a symbolic representation of a cat – like a drawing or a description – and use that information to identify a real cat – even if we’ve never seen one before. Before Le came along, machines couldn’t do this. He worked as one of the main coders behind the Google Brain, a system that was able to teach itself to recognize images of cats on YouTube. It’s the search giant’s venture into the realm of deep learning – a field of artificial intelligence aimed at creating machines that work in ways that mimic the human brain – and it’s just the beginning of work that could revolutionize computing. In addition to his work on Google Brain, Le also developed a system that maps words to vectors, turning them into unique sets of numbers from which a computer can derive information. This system went on to become part of Word2Vec, a system that analyzes the relationships between words and helps to strengthen the “knowledge graph” that Google’s search engine uses to identify connections between related concepts in users’ searches. That’s just the beginning for Le. He and his colleagues at Google recently published a paper on advanced neural networks – software that’s designed to reflect the networks of neurons used by the human brain – that’s helping to advance another discipline in the field of artificial intelligence known as natural language processing, a discipline that may ultimately allow machines to understand human symbolism, subtlety and even sarcasm. Building upon Le’s word mapping, he hopes to develop systems that can translate more complex ideas into information that a computer can process in much the same way as our brains. Using things called “recurrent neural networks” – more advanced forms of traditional neural network software – machines could eventually translate entire sentences and paragraphs into numbers that it can sort, group and store. That is, they could acquire and use information just as humans do. This ability has virtually limitless potential. The world’s most powerful computers could do more...

Read More